If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x-50=0
a = 1; b = -24; c = -50;
Δ = b2-4ac
Δ = -242-4·1·(-50)
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{194}}{2*1}=\frac{24-2\sqrt{194}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{194}}{2*1}=\frac{24+2\sqrt{194}}{2} $
| 7+10m-1=9m+62-9m | | (2x+8)+(3x+16)+(3x+16)+(4x-18)+(3x-17)+(2x+25)=180 | | X^2(-7-3x)^2=7 | | 1/2(4x-6)=29 | | (y-4)*(y-4)=26 | | 6(2n+1)-42=0 | | 2(3m-2)+10=6 | | 4x+4x+4=192 | | 8x+4=6x+9 | | (3x+5)-(4x+8)=9 | | 3-6x+1=-2x-9 | | 6(2p-1)-5=23 | | -4x-7-3+4=25 | | 3x^2=6x-3=0 | | 5(2z-1)+4=29 | | x+(2x-7)/2-(3x+1)/5=5-(x+6)/2 | | 3=0.03t3+0.05t2 | | x=-x^2+28 | | 3(y+5)-4=24 | | 6x^2+22=0 | | 6*2n=96 | | 17+6x/2=12+9-15+4x | | 2(x+2)=3x-5 | | 4x-35=5x-17+4x-7 | | 10/4y-3=5 | | p-37=-35 | | 3n-25=26 | | 3(x+1)=63 | | 2x^2+6x+29-169=0 | | u+4=24-3u | | 3J=j=28 | | 3t-2=13-2t |